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DEFORMATION OF AN ELLIPSOIDAL FERROGEL SAMPLE

IN A UNIFORM MAGNETIC FIELD

UDC 538.65:539.38Yu. L. Raikher and O. V. Stolbov

The elongation of a ferroelastic material sample (whose initial shape is a sphere or an ellipsoid of
revolution) under the action of an external magnetic field is studied in an in approximation of small
strains. For a sphere, there is a classical estimate obtained under the assumption that elongating in
the direction of the field, it becomes a spheroid and the stress and strain fields remain uniform. In
the present calculation, it is assumed that the body is an ellipsoid (a sphere in a particular case) only
in the absence of an external field; the shape of the sample in the presence of a field is not specified
in advance but is found from the condition of balance of surface forces (elastic and magnetic). For
the spherical case, the problem is solved exactly: it is shown, that the contour of the deformed body is
described by a third-order algebraic equation. The case where the initial configuration is an ellipsoid
of revolution is studied numerically. It is shown that in all versions, the refined solution leads to an
appreciable increase in the elongation of the sample compared to the classical estimate.
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Introduction. The term ferroelast or magnetic elastomer refers to a composite system consisting of an
elastic (viscoelastic) polymer matrix filled with a fine ferromagnetic material. Recently, there has been considerable
interest in soft ferroelasts (ferrogels) [1–6] whose Young’s moduli . 104 Pa. They are candidates for use as materials
for artificial muscles, active elements of micromanipulators, adaptive coatings, etc. All applications of ferrogels are
based on the magnetic-deformation effect (MDE), whose essence is that a sample placed in a magnetic field changes
the initial shape and the strain can reach many tens of percent [7, 8].

The simplest version of the solution of the MDE problem is readily obtained if one takes the solution from [9]
for the deformation problem for a spherical sample of radius R subjected to an external electric field E0 and then
rewrite it using the analogy between the magnetostatic and electrostatic potentials. As a result, we have

al − bl
R

=
ε0

10G

( æE0

1 + æ/3

)2

=
P 2

10Gε0
, (1)

where al and bl are the semiaxes of the cross section of the ellipsoid obtained as a result of deformation, P is the
polarization inside the sphere, G is the shear modulus, æ is the dielectric susceptibility of the material, and ε0 is
the dielectric constant. As follows from formula (1), the dielectric striction effect is even in the field.

Below, the elongation is characterized by the parameter ε, which is equal to the relative change in the
distance between the geometrical poles of the sample in the direction of the applied field. In this representation,
the striction effect (1) is expressed by the relation

ε = al/R− 1 = P 2/(15Gε0), (2)

which takes into account that at small strains of the incompressible sphere, (al − bl)/R ' 3(al − R)/(2R). The
transition from relations (1) or (2) to the magnetic case, which will be called the magnetic-deformation effect is
obvious: it suffices to replace the electric-field stress and polarization vectors by the corresponding characteristics
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of the magnetic field and the dielectric susceptibility æ by the magnetic susceptibility χ. Subsequently, we assume
that this transition is implemented and use relation (2), appropriately redesignated, as the classical estimate of the
magnetic-deformation effect in a uniform field.

General Formulation of the Problem of Magnetic-Deformation Effect. The assumption that a
magnetoelastic spheroid always remains such (a figure of the second order according to the classification adopted
in analytical geometry), which underlies the classical solution, is extremely convenient from a mathematical point
of view. However, in [9], the physical admissibility of this postulate is not discussed. At the same time, in the
solution of the problem in the full formulation, the shape taken by the body upon magnetization should be found
without additional conditions. From this it follows that the postulate of ellipsoidality is likely to be incompatible
with the exact solution. To elucidate this question, we write the complete system of MDE equations, relating in
it the magnetostatic and elastic problems. We begin with the magnetostatic part. In the absence of currents, the
magnetic-field strength vector H can be represented as the gradient of the scalar function ψ: H = H0−∇ψ (H0 is
the applied external field). From the solenoidality condition ∇ · (H + M) = 0, we have

∆ψ = ∇ ·M , (3)

where M is the magnetization vector.
The relationship between the magnetic vectors on the sample surface follows from the continuity conditions

for the normal induction component and the tangential component of the magnetic-field strength:
∂ψ(i)

∂n

∣∣∣
Γ
− ∂ψ(e)

∂n

∣∣∣
Γ

= M · n
∣∣∣
Γ
, ψ(i)

∣∣∣
Γ

= ψ(e)
∣∣∣
Γ
. (4)

Here n is the outward normal vector and Γ is the boundary of the sample. Here and below, the superscripts (i)
and (e) denote the values of the quantities inside the sample and in the external region, respectively.

The balance condition for the elastic forces inside the sample is expressed by the equation
∇ · T + µ0(M · ∇)H = 0, (5)

where T is the Cauchy stress tensor and µ0(M · ∇)H is the ponderomotive force due to the nonuniformity of the
magnetic field inside the sample. In equilibrium, the following condition should be satisfied on the boundary of the
sample:

n · T
∣∣∣
Γ

= (1/2)µ0M
2
nn

∣∣∣
Γ
. (6)

It expresses the balance of the external and internal pressures; Mn = M · n is the normal component of the
magnetization vector.

Relations (3)–(6) together with the equations of state M = M(H, e) and T = T (H, e) (e is the strain
tensor) form the closed system of equations of the static magnetoelastic problem, whose solution should completely
define the shape taken by the ferroelastic sample in the specified external field and describe the magnetic-field
distribution and the stress–strain state inside the ferroelastic body.

Magnetic-Deformation Effect at Small Strains of the Ellipsoid. In the initial state (with no external
field), let the ferroelastic sample have the shape of an ellipsoid of revolution. We place the origin of the coordinate
system at the center of the sample. The external uniform field H0 is directed along the principal axis of symmetry
of the sample, which is chosen to be the Oz axis of cylindrical coordinates; the basis vectors of the latter are denoted
by ερ, εθ, and εz. As the dimensionless characteristics of the ellipsoid, we use the ratio a/b of the lengths of its
semiaxes, where a is the principal semiaxis.

We consider the initial stage of the magnetic-deformation effect, i.e., we assume that the strains are small.
In this case, the magnetostatic force does not depend on the elongation and can be found under the assumption
that the sample shape is unperturbed. Because of this, the problems of calculating the internal magnetic field and
the mechanical-stress and strain fields are split and can be solved sequentially.

The magnetostatic problem for an ellipsoid has the well-known analytical solution, according to which the
field inside the sample is uniform, is directed along the Oz axis, and is equal to

H = H0 −M(H)N(x). (7)

Here N is the demagnetizing factor along the Oz axis and x is the eccentricity of the meridian section of the body.
For a prolate spheroid (a > b), we have

N(x) = (1− x2)(arctanhx− x)x−3, x =
√

1− b2/a2;
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for an oblate spheroid (a < b), the demagnetizing factor is written as

N(x) = (1 + x2)(x− arctanhx)x−3, x =
√
b2/a2 − 1.

For the magnetization of the ferroelastic sample, we use the Langevin law

M(H) = M0L(µ0mH/kT )h, L(ξ) ≡ coth ξ − 1/ξ, (8)

thus assuming that the magnetic phase of the material consists of superparamagnetic one-domain or subdomain
particles. In Eq. (8), the magnetic moment of a separate particle m = Iv is defined by the product of its volume v
by the magnetization I of the ferromagnetic material; µ0 is the magnetic constant. The saturation magnetization
of the ferroelastic sample is written as M0 = nm, where n is the number concentration of magnetic particles.
Physically, the argument of the Langevin function is the ratio of the orientational energy of the magnetic moment
of the particle in the applied field H = Hh (h is the unit vector) to the thermal energy kT (k is Boltzmann’s
constant).

We convert to dimensionless variables by introducing the fields ξ = µ0mH/(kT ) and ξ0 = µ0mH0/(kT ). In
the new notation, Eq. (7), which defines the internal field in the ellipsoid, in view of (8), becomes

ξ = ξ0 − 3χ0N(x)L(ξ), (9)

where χ0 = µ0mM0/(3kT ) is the initial magnetic susceptibility. We note that Eq. (9) is nonlinear in ξ and has no
analytical solution.

To describe the elastic behavior of the material, we use small strain theory; i.e., as the equation of state, we
use Hooke’s law and define the relationship between the strain tensor e and the displacement vector u by the linear
relations

T = λI1(e)g + 2Ge, e = (∇u +∇ut)/2, (10)

where I1(e) is the first invariant of the strain tensor, g is the unit tensor, and λ and G are Lamé’s constants.
In the case of a uniform external field, the magnetic field inside the ellipsoid is also uniform, because of

which mass forces are absent. Under these assumptions, Eq. (5) becomes ∇ · T = 0. Condition (6) on the sample
boundary Γ (taking into account that M2

n = M2n2
z) and the boundary conditions on the ρ and z axes formulated

taking into account the symmetry of the problem become

n · T
∣∣∣
Γ

= (1/2)µ0M
2n2

zn
∣∣∣
Γ
, uρ

∣∣∣
ρ=0

= uz

∣∣∣
z=0

= 0, Tρz

∣∣∣
z=0

= Tρz

∣∣∣
ρ=0

= 0. (11)

We choose the shear modulusG as the uniform scale for the magnetization, stress tensor, and the coefficient λ;
i.e., we set M̃ =

√
G/µ0 M , T̃ = T/G, and β = λ/G. The last of the introduced dimensionless parameters

characterizes the compressibility of the material: the limit β → ∞ corresponds to the incompressible ferroelast.
In the calculations below, the tilde sign is omitted; therefore, reverse conversion to dimensional variables will be
specified separately.

Extending the definition (2) to the case of a sample whose initial configuration is an ellipsoid of revolution,
as the characteristic of elongation, we shall use the quantity

ε = uz(ρ = 0, z = a)/a, (12)

which is equal to the relative change in the distance between the poles of the sample in the Oz direction (the field
direction); here a is the semiaxis along which the applied field is directed.

Magnetic-Deformation Effect for Homogeneous Deformation of a Sphere. We use the general
equations given above to describe the strain of a ferroelastic sphere; the radius of the sphere is considered unit.
The demagnetization factor of the sphere equals to 1/3 since, according to (9), the magnetic field inside the sample
is defined by the equation ξ = ξ0 − χ0L(ξ). We now consider the elastic problem assuming a linear distribution of
displacements in the form

uρ = Aρ, uz = Bz. (13)

In cylindrical coordinates, the components of the displacement vector and the strain tensor are linked by the relation

eρz =
1
2

(∂uz

∂ρ
+
∂uρ

∂z

)
, eρρ =

∂uρ

∂ρ
, ezz =

∂uz

∂z
, eθθ =

uρ

ρ
. (14)
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Substitution of linear relations (13) into the above relation shows that only the diagonal components of the strain
tensor are nonzero and that inside the sample they are homogeneous: eρρ = eθθ = A and ezz = B. In view of this,
from the constitutive relation (10), we obtain

Tzz = βI1(e) + 2ezz, Tρz = 2eρz, Tρρ = βI1(e) + 2eρρ,

Tθθ = βI1(e) + 2eθθ, I1(e) = eρρ + ezz + eθθ,
(15)

whence it is evident that the stress tensor T also has a diagonal form and is homogeneous inside the sample. Then,
according to (12), the elongation ε becomes

ε = uz(ρ = 0, z = 1), (16)

and in the case of homogeneous deformation, it becomes ε = Bz|z=1 = ezz.
For the examined magnetoelastic problem, we write the virtual work principle:

1
2
M2

∫
Γ

n2
zn · δu dS =

∫
V (i)

T · δe dV. (17)

In the case of uniform stress and strain fields, integration over the volume of the sphere of unit radius reduces to
multiplication by 4π/3; the surface integral on the left side of Eq. (17) is easily calculated in spherical coordinates.
Substituting Hooke’s law (10) and the strain field (13) into Eq. (17), assuming that the variations δA and δB are
independent, and setting the coefficients at them equal to zero, we find the equilibrium strain tensor

eρρ = eθθ = − 1
10
M2 β − 1

3β + 2
, ezz =

1
10
M2 2β + 3

3β + 2
.

As β →∞, i.e., in the case of an incompressible material, this implies that the elongation parameter (in dimensional
form) is equal to

ε = ezz = µ0M
2/(15G). (18)

A comparison of this result with formula (2) proves that the above consideration and the classical estimate are
identical.

Magnetic-Deformation Effect for Homogeneous Deformation of an Ellipsoid. The classical prob-
lem [9] is easy to extend to the case where the sample in the initial state (H0 = 0) has the shape of an arbitrary
ellipsoid of revolution. Keeping the homogeneous deformation hypothesis (13), we use Eq. (17) and choose the
length of the spheroid semiaxis b as the measurement unit. The integral over the sample surface is taken in elliptic
coordinates, and the integral over the volume reduces to multiplication of the integrand by the volume of the body
4πab2/3. Requiring that the coefficients at the variations δA and δB vanish, for a prolate spheroid (a > b) we
obtain a system of two linear equations, whence we find the components of the equilibrium strain tensor and the
elongation parameter in the form

eρρ = eθθ = −M2 (x2 − 1){3[β(x2 − 3) + 2(x2 − 1)] arctanhx+ 3x(3β + 2)− 4x3}
8(3β + 2)x5

,

ε = ezz = M2 (x2 − 1){3[β(x2 − 3)− 2] arctanhx+ 3x(3β + 2) + 2x3}
4(3β + 2)x5

,

(19)

where x =
√

1− b2/a2 is the eccentricity of the meridian section. For an incompressible material (β → ∞), from
relations (19) we have

ε = ezz = −2eρρ = −2eθθ = M2 (x2 − 1)[(x2 − 3) arctanhx+ 3x]
4x5

, (20)

which at the limit x → 0, i.e., for a spherical sample becomes (18); in the comparison, it is necessary to take into
account that formula (20) is written in dimensionless units.
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Requiring that the variations vanish, for an oblate spheroid (a < b) we obtain

eρρ = eθθ = −M2 (1 + x2){3[β(x2 + 3) + 2(x2 + 1)] arctanhx− 3x(3β + 2)− 4x3}
8(2 + 3β)x5

,

ε = ezz = M2 (1 + x2){3[β(x2 + 3) + 2] arctanhx− 3x(3β + 2) + 2x3}
4(3β + 2)x5

,

(21)

where x =
√
b2/a2 − 1. For an incompressible material (β →∞), from the latter expression, we have

ε = ezz = −2eρρ = −2eθθ = M2 (x2 + 1)[(x2 + 3) arctanhx− 3x]
4x5

. (22)

In the limiting cases of needlelike (b/a → 0) and disklike (a/b → 0) bodies, using suitable expansions in
formulas (22) and (20), we obtain

ε =
1
4
M2

{
(b2/a2) ln [4a2/(e3b2)] +O(b4/a4) at b/a→ 0,

a/(2b) +O(a2/b2) at a/b→ 0.
(23)

It is obvious that in both cases, the magnetic-deformation effect in the ellipsoid is vanishingly small irrespective of
the particular magnetization law.

Exact Solution of the Linear Problem of the Magnetic-Deformation Effect for a Sphere. We
consider the general situation, in which, unlike in the classical case, the requirement of stress and strain homogeneity
is not formulated. In other words, the body configuration resulting from the MDE is not postulated but is found
from the solution of the elastic problem. We represent the displacement u(ρ, z) at an arbitrary point of the sample
in the form of a series in the powers of the coordinates ρ and z and impose the following symmetry conditions on
the desired solution: uρ depends only on the odd powers of ρ and even powers of z and uz depends only on the
odd powers z and even powers of ρ. Taking into account that the displacements should satisfy boundary conditions
(11), we write

uρ = A1ρ+A2ρ
3 +A3ρz

2, uz = B1z +B2z
3 +B3zρ

2. (24)

The final length of the chosen power series is justified by the exact solution obtained below.
In the examined case, the equilibrium equation ∇ · T = 0 has two nontrivial components

∂Tρρ

∂ρ
+
∂Tρz

∂z
+
Tρρ − Tθθ

ρ
= 0,

∂Tρz

∂ρ
+
∂Tzz

∂z
+
Tρz

ρ
= 0; (25)

and boundary conditions (11) become

Tρρρ+ Tρzz = M2z2ρ/2, Tρzρ+ Tzzz = M2ρ2z/2. (26)

Here it is taken into account that the components ρ and z on the surface of a unit sphere are the corresponding
projections of the outward normal vector.

Let us substitute series (24) into the relations between the stress and strain tensors (14) and (15) and the
obtained results into Eqs. (25) and (26). The equilibrium equations should be satisfied for any ρ and z, and the
boundary conditions for any values the latitudinal angle α (for the points on the boundary of the sample, ρ = sinα
and z = cosα). A combination of these conditions leads to a system of six linear equations with a nondegenerate
determinant. Solving this system by a standard method, we find the coefficients Ai and Bi of expansions (24).
Using the expressions obtained, for the displacement vector components, we obtain

uρ(ρ, z) =
M2ρ

2(19β + 14)

(
− 2(4β + 3)β

3β + 2
+ βρ2 + (3β + 7)z2

)
;

uz(ρ, z) =
M2z

2(19β + 14)

(16β2 + 31β + 14
3β + 2

− 2βz2 − (4β + 7)ρ2
)
,

whence, using the definition (16), we find the elongation parameter

ε =
uz(0, R)

R
= M2 10β2 + 27β + 14

2(19β + 14)(3β + 2)
.
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Fig. 1. Differences in displacement on the boundary of a spherical sample between the exact solution
and the classical estimate (spheroid) versus the angle α: the solid curve refers to the ρ-component
and the dashed curve to the z-component.

For an incompressible material (β →∞), the displacement field is given by

uz = −M2z(3z2 + 6ρ2 − 8)/57, uρ = M2ρ(3ρ2 + 9z2 − 8)/114,

and the elongation equals

ε = 5µ0M
2/(57G). (27)

The last formula is written in dimensional quantities.
Knowing the vector u, it is possible to find the total stress and strain fields inside the sample:

eρρ = (1/2)M2(−8 + 9ρ2 + 9z2)/57, ezz = −M2(−8 + 9z2 + 6ρ2)/57,

eθθ = (1/2)M2(−8 + 3ρ2 + 9z2)/57, eρz = −(1/2)M2zρ/19;
(28)

Tρρ = (1/2)M2(1− ρ2 + 20z2)/19, Tzz = (1/2)M2(17− 15ρ2 + 2z2)/19,

Tθθ = (1/2)M2(1− 5ρ2 + 20z2)/19, Tρz = −M2zρ/19.
(29)

Formulas (28) and (29) represent the stress and strain components. We recall that for infinitesimal external
perturbations, the strain and stress field are constructed in an undeformed sample. As one can see, the largest
values of the diagonal tensor stress components are reached at the poles of the sphere. On the equator of the
sample, the component Tθθ is negative, and in the polar zones, a thin surface layer is formed, in which the material
undergoes longitudinal compression (ezz < 0). The largest tensile strains are on the central part of the sample,
and the maximal shear strains are on the surface belts located at α = 45◦ and 135◦. Generally, exact calculations
show that even in a sphere made of a homogeneous ferroelastic material and even in an indefinitely small, uniform
magnetic field, the magnetic-deformation effect generates a nonuniform strain field. This negates the postulates of
stress and strain homogeneity and unchanged ellipsoidal shape, which underlie the classical solution [9]. In other
words, as shown above, the body to which a sphere is transformed under magnetic deformation is not an ellipsoid
of revolution.

A quantitative estimate of the difference between the exact calculation of the MDE and the approach using
a spheroid as a variational solutions can be obtained by comparing the coefficients in relations (18) and (27). It
is obvious that the error that arises from the choice of a spheroid as a variational solution exceeds 30%. In other
words, if one uses a spherical ferrogel sample to measure Young’s modulus using the MDE (say, in determining
the quantity µ0M

2/ε), data interpretation using the classical estimate yields a value of G that is approximately
one-third smaller than the true value.

Figure 1 gives curves of the latitudinal angle α versus the difference between the exact solution and the
classical estimate (spheroid) for the displacement vector components on the sample boundary. It is assumed that
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Fig. 2. Elongation parameter of a sphere as a function of the initial susceptibility of a ferroelastic
material and the dimensionless strength of the applied field.

the center of the body always remains immovable. It is obvious that the body into which the sphere is transformed
as a result of the MDE is longer in the longitudinal direction and hence, narrower in the cross section than an
ellipsoid of revolution of equal volume. Qualitatively, this conclusion already follows from the relationship between
the coefficients in formulas (27) and (18). We note, however, that the representation of the MDE via magnetization
does not allow one to see the direct relationship between the magnetic strain of the sphere and the factors responsible
for this. This is due to the complex dependence between the field applied to the magnetized sample and the internal
field in it. Indeed, relation (7) and relation (9) following from it are transcendental equations for the internal field,
from which magnetization is then determined, for example, according to Eq. (8). The results of such transformation
are illustrated in Fig. 2, in which curves of the MDE versus the initial susceptibility of a ferroelastic material χ0 and
the dimensionless strength ξ0 the applied magnetic field are plotted using exact values. The first of the indicated
quantities is a directly measured characteristic of the material, and the second is a parameter which is directly
controlled in experiments. We pay attention to the choice of the scale for measuring ε; it is motivated by the
necessity of representing the right side of (27) as a function of only χ0 and ξ0. Since an increase in any of these
quantities leads to an increase in the magnetostatic energy gain during sample elongation, the monotonic increase
in ε in Fig. 2 is quite clear.

Numerical Solution of the Linear Problem of the Magnetic-Deformation Effect for an Ellipsoid.
We extend the formulation of the problem and consider the situation in which the sample in the initial state has
the shape of an arbitrary ellipsoid of revolution. In this case, the magnetic field is still applied along the principal
axis of symmetry. Since the exact solution of the elastic problem can be found only for a spherical sample, for
a spheroidal initial configuration, we employ a finite-element method. As the basis, we use a complete system of
linearly independent functions φj , which is constructed as follows. The axial section of the ellipsoid of revolution is
divided into triangles, and each top of the triangles is taken to be a node. All nodes are numbered from 0 to m− 1.
Each function φj is considered piecewise-linear; it is equal to unity at the jth node and zero at the remaining nodes.

The scalar functions φj are used to construct a system of vector functions {Φj} that possess the same
properties as {φj}. Bearing in mind that the examined problem possesses axial symmetry, we write the indicated
system in cylindrical coordinates:

Φ2j = φjερ, Φ2j+1 = φjεz, j = 0, . . . ,m− 1.

We expand the displacement field inside the sample in terms of the chosen system of functions

u =
2m−1∑
j=0

ujΦj
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Fig. 3. Elongation of a spheroid versus the initial value of a/b (compressibility pa-
rameter β = 20): the solid curve refers to calculations using formulas (19) and (21)
of the classical solutions; the dashed curve refers to the same for an incompressible
material (β = ∞); points 1 refer to the numerical calculation and points 2 refer to
the exact solution for a sphere from an incompressible material.

and substitute this expansion into the variational equation (17), again assuming that the elastic state equation is
given by Hooke’s law (10). Setting the coefficients at δuj equal to zero, we obtain a system of 2m linear algebraic
equations for the amplitudes uk:

2m−1∑
k=0

uk

∫
V

(∇ ·Φk∇ ·Φj + β(∇Φk +∇Φt
k) · ∇Φj) dV =

1
2

∫
Γ

n ·ΦjM
2
n dS. (30)

System (30) is solved by standard methods for various values of the material parameters of a ferroelastic material and
the aspect ratio a/b of the initial configuration. The resulting displacement field is used to find the stress and strain
tensors and then the elongation parameter ε from formula (12). The quantity ε obtained by numerical calculation
of the MDE is shown in Fig. 3 by a dashed curve as a function of the ratio a/b of the initial spheroid; here the point
a/b = 1 corresponds to a spherical sample. The solid curve shows the dependence obtained using formulas (19) and
(21). It can be called a generalized classical solution since it is obtained by extension of the MDE problem from [9]
(the hypothesis of stress and strain homogeneity) to the case where the initial shape of the body is not a sphere
but a spheroid. As can be seen, there is complete qualitative similarity between the curves. Quantitatively, the
maximum on the curve of ε(a/b) that corresponds to the exact solution is more pronounced. A common feature
of both approaches is a decrease in the MDE (a decrease in ε) for strongly oblate (a/b → 0) and strongly prolate
(a/b � 1) samples. The latter is an expected effect: for the classical formulation of the problem, this tendency is
established by relations (23). In other words, the magnetic stretching of rodlike and flat lenticular spheroids from
ferroelastic materials is extremely hindered. As can be seen from Fig. 3, the stretching conditions are optimal, i.e.,
the magnetic-deformation susceptibility is maximal for slightly oblate bodies: a/b ' 0.8.

Figure 3 shows the behavior of the numerical coefficient in the formulas generalizing (18) and (27), respec-
tively, for M = const, thus illustrating the geometrical dependence of the elastic effect for a specified internal
magnetic state of the sample. To relate the elongation ε to the applied field and the magnetic characteristics of a
ferroelastic material, it is necessary, as was done above in constructing Fig. 2, to find a solution ξ(ξ0, χ0) of Eq. (9)
and to use it in the magnetic state equation (8). The results of this transformation are given in Figs. 4 and 5.
Figure 4 shows how the geometrical effect in the MDE changes with change in the applied field. Of course, the
maxima at ξ0 = const on the curves of ε(a/b) have the same nature as the curves presented in Fig. 3. Since the
Langevin function is saturated in strong fields, it is obvious that the curves of ε(ξ0) possess the same property for
fixed initial values of the ratio a/b. Another consequence of the magnetization saturation is the occurrence of the
limiting value of the coordinate of the maximal elongation point on the axis a/b. One can see this by considering
the relative position of the level lines plotted on the plane ε = 0 (Fig. 4).
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Fig. 4. Elongation of a spheroid as a function of the initial value of a/b and the applied field ξ0: the
initial susceptibility χ0 = 0.1/(4π); the scale on the axis a/b is logarithmic.
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Fig. 5. Elongation of a spheroid as a function of the initial value of a/b and the initial susceptibil-
ity χ0/(4π): the applied field is ξ0 = 1; the scale on the axis a/b is logarithmic.

Figure 5 illustrates the relationship between the geometrical elongation effect and the basic material param-
eter of a ferroelastic material — its initial magnetic susceptibility χ0 = nµ0m

2/(3kT ). A distinguishing feature that
is easy to find in examining the arrangement of the level lines is the nonmonotonic behavior of the function ε(χ0)
for a/b = const. To understand the origin of the indicated line of maxima, we note the following. In a completely
nonmagnetic elastomer (magnetic-phase concentration n = 0), there is no MDE. However, it occurs in a material
that possesses indefinitely weak magnetic susceptibility. Indeed, for the elongation parameter in the scale chosen
in Fig. 5, we have µ0(m/kT )2Gε ∝ χ2

0L
2(ξ). In the case of small χ0, where the contribution of the susceptibility

to the internal field is insignificant, this indicates quadratic growth. The same effect should also occur for rather
prolate samples since Eq. (9) contains the susceptibility multiplied by the longitudinal demagnetizing factor. In
the case of not too low susceptibilities and not too prolate samples, where the product 3χ0N becomes comparable
to unity, it is necessary to take into account that the argument of the Langevin function (8) is the internal field ξ

defined by Eq. (9). For the case presented in Fig. 5, this equation should be solved for ξ0 = const. Under these
conditions for ξ0 & 1, the internal field ξ is a decreasing function of the magnetic susceptibility of the material,
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resulting in a decrease in the achieved magnetization of the material and, thus, in a decrease in the MDE. In other
words, increased magnetic susceptibility leads to shielding of the sample interior from the magnetizing effect of the
field applied from outside.

Conclusions. A system of equilibrium equations for a ferroelastic material in the presence of an external
magnetic field was proposed. The boundary conditions for the main variables of the problem were formulated, and
the simplest constitutive relations were derived. The model medium is a Hooke’s elastic continuum magnetized
under Langevin’s law. It was shown that the magnetic-deformation effect that arises in such a material on exposure
to a uniform magnetic field is qualitatively similar to the dielectric striction effect described in [9].

In addition, it was shown that the standard assumption that a sphere or an ellipsoid of revolution subjected
to the MDE always keep a spheroidal shape is equivalent to the assumptions that the strain field and the magnetic
field in the sample always remain uniform. Direct calculations free from this restriction yielded an analytical solution
of the MDE problem for a spherical sample and a numerical solution for any ellipsoid of revolution. It turned out
that the difference between the results of exact calculations and the classical approach reaches 30%. Conditions
were obtained under which the MDE is maximal for an ellipsoid of revolution of specified volume. It was found that
in a certain range of applied fields, an increased content of the magnetic phase in the material (increased initial
susceptibility) leads to a decrease rather than an increase in the magnetic-deformation effect.

In summary, we estimate the order of magnitude of the MDE in a soft magnetic material. In a typical case
[1, 6], its magnetic phase consists of particles of ferrite, magnetite or gamma-oxy iron of diameter d ≈ 10 nm and
saturation magnetization IS ≈ 300 kA/m. The Young’s modulus of the matrix (polyvinyl alcohol or polyacrylamide
gel) is G ≈ 103 Pa. The concentration of ferroparticles φ, according to [6], reaches several volume percent. Assuming
that φ = 5%, we obtain a numerical concentration n ≈ φ/d3 ≈ 1023 m−3. Estimation of the value of the magnetic
moment of a separate particle (in the chosen range of sizes, it is in a one-domain state) yields µ0m ≈ µ0ISd

3

≈ 2 · 10−25 T ·m3. From this, the initial susceptibility at room temperature is χ0 = µ0nm
2/(3kT ) ≈ 0.3. For the

estimated saturation magnetization of the ferrogel, we have M0 = nm ≈ 10 kA/m. Estimation of the magnetic-
deformation elongation parameter using formula (27) shows that in the order of magnitude, it is ε ' µ0M

2
0 /(3G)

≈ 0.1. In spite the possible inaccuracy of the data used, the last value shows that a magnetic-deformation effect of
tens percent is quite achievable.
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